天天观焦点:高一函数知识点大全
▼▼目录▼▼ | |
---|---|
函数的奇偶性 | 函数的定义域的常用求法 |
函数的解析式的常用求法 | 函数的值域的常用求法 |
函数的最值的常用求法 | 函数单调性的常用结论 |
函数奇偶性的常用结论 | 学好高中数学的方法 |
高一函数知识点总结:函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x);
【资料图】
(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2. 复合函数的有关问题
(1)复合函数定义域求法:若已知 的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;
4.函数的周期性
返回目录>>>
高一函数知识点总结:函数的定义域的常用求法
1、分式的分母不等于零;
2、偶次方根的被开方数大于等于零;
3、对数的真数大于零;
4、指数函数和对数函数的底数大于零且不等于1;
5、三角函数正切函数y=tanx中x≠kπ+π/2;
6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
返回目录>>>
高一函数知识点总结:函数的解析式的常用求法
1、定义法;
2、换元法;
3、待定系数法;
4、函数方程法;
5、参数法;
6、配方法
返回目录>>>
高一函数知识点总结:函数的值域的常用求法
1、换元法;
2、配方法;
3、判别式法;
4、几何法;
5、不等式法;
6、单调性法;
7、直接法
返回目录>>>
高一函数知识点总结:函数的最值的常用求法
1、配方法;
2、换元法;
3、不等式法;
4、几何法;
5、单调性法
返回目录>>>
高一函数知识点总结:函数单调性的常用结论
1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。
2、若f(x)为增(减)函数,则-f(x)为减(增)函数。
3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x)]是减函数。
4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。
5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。
返回目录>>>
高一函数知识点总结:函数奇偶性的常用结论
1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。
2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。
3、一个奇函数与一个偶函数的积(商)为奇函数。
4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。
5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。
返回目录>>>
学好高中数学的方法
1、课前预习教材。高中生想要学好数学,可以养成课前预习的好习惯。就是提前把老师第二天要讲的内容预习一下,看看自己哪里能看懂,哪里不懂。这样才能在老师讲课的时候,带着问题有针对性的去听。
2、上课专心听讲。很多高中生数学不好的原因,往往是因为没有认真听课。很多同学都认为老师讲的已经懂了,就不认真听了,但是在自己做题的时候,却往往做不对题。上课专心听讲往往是比课下自己学习要效果更好。
3、准备笔记本。高中生要准备一个笔记本,笔记本并不是让你记公式和概念的,这些的东西书上都是有的,笔记本主要是要记老师给的例题。毕竟老师是很有经验的,他们给的例题都是有一定的代表性的,把例题研究透对于数学成绩的提高是有很大的助益的。
而对于学习函数知识也是差不多的:
首先,在学习高中函数的时候,学生要掌握好各个函数的性质特点。函数的定义明确,还是比较容易理解的。学生们可以通过函数的性质去了解并掌握函数。很多高一学生开始学习函数的时候,可能有很多内容不懂,但是不要紧张,也不要自暴自弃。
要坚持听好每一节课,知识总是聚少成多,无论什么知识都是见微知著的,需要不停积累才能看出事物的本质。
其次,在学习函数的时候,不要死记硬背。函数的基础题型比较多,老师上课的时候往往会重点讲解。学生要掌握并理解好重点题型,如果只是熟悉题型,并不理解的话,很难将函数知识融会贯通。函数的学习重点不在记忆,而在于理解。
行百里者半九十,学习函数要有耐心,专心听课,重视理解。只要持之以恒,就一定可以学好数学。
返回目录>>>
高一函数知识点相关文章:
★ 高一函数知识点总结大全
★ 高一函数知识点总结归纳
★ 高一数学函数知识点汇总
★ 高一函数知识点总结必看
★ 高一数学必修一函数知识点总结归纳
★ 高一数学函数知识点归纳
★ 高一数学函数知识点汇总(2)
★ 高一数学函数知识点总结
★ 高一数学必修1函数的知识点归纳
★ 高一数学函数知识点
标签: 高一数学函数